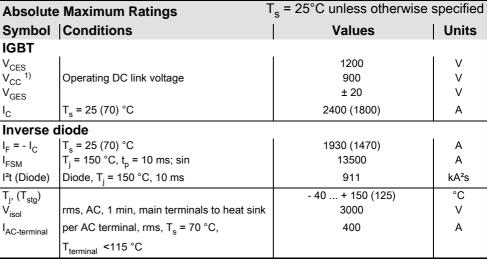
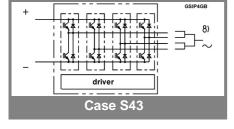

SKiiP 2403GB122-4DW

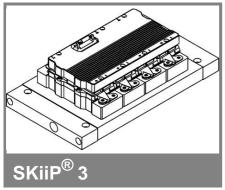

2-pack-integrated intelligent Power System

Power section SKiiP 2403GB122-4DW


Preliminary Data

Features

- SKiiP technology inside
- SPT (Soft Punch Trough) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request



					T - 059	°C	- 4l m;	ifi-d
Characteristics				T _s = 25°C unless otherwise specified				
_	Conditions			min.	typ.	max.	Units	
IGBT	ř.							Ī
V _{CEsat}	I _C = 1200 A measured at te	x, T _j = 25 rminal	(125) °C;			2,3 (2,5)	2,6	V
V_{CEO}	T _i = 25 (125) °C; at terminal				1,1 (1)	1,3 (1,2)	V	
r_{CE}	T _i = 25 (125) °C; at terminal					1 (1,2)	1,1 (1,4)	mΩ
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _i = 25 (125) °C					mA		
$E_{on} + E_{off}$	$I_{\rm C} = 1200 \text{A}$	$V_{CC} = 6$	00 V		360			mJ
	T _j = 125 °C	, V _{CC} = 9	00 V		635			mJ
R _{CC+EE}	terminal chi	ip, T _i = 25	5 °C		0,13			mΩ
L _{CE}	top, bottom					3		nΗ
C _{CHC}	per phase,	per phase, AC-side			4			nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 1200 A measured at te		(125) °C			1,95 (1,7)	2,1	V
V_{TO}	T _i = 25 (125	5) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25 (125)$, 5) °C				0,7 (0,8)	0,8 (0,9)	mΩ
E _{rr}	I _C = 1200 A	$V_{CC} = 6$	00 V		96			mJ
	T _i = 125 °C, V _{CC} = 900 V				122			mJ
Mechani	cal data							
M _{dc}	DC termina	ls, SI Uni	its		6		8	Nm
M_{ac}	AC termina	'			13		15	Nm
W	SKiiP® 3 System w/o heat sink				3,1		kg	
W	heat sink					97		kg
						:ol); "s" re	eference t	o heat
	reference	to bui	lt-in tem	perature	sensor			1
$R_{th(j-s)l}$	per IGBT						0,013	K/W
$R_{th(j-s)D}$	per diode						0,025	K/W
Z_{th}	R _i (mK/W) (max. values)			tau _i (s)				
	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	1,2	5 3	5,8	0 12.5	69 50	0,35 5	0,02	1
Z _{th(j-r)D}	2		13,5	13,5	50		0,25	0,04
$Z_{th(r-a)}$	2,7	4,6	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 2403GB122-4DW

	•
2-pack-i	ntegrated
intelliger	nt Power System

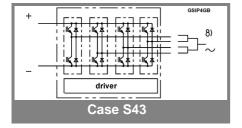
2-pack integrated gate driver SKiiP 2403GB122-4DW

Preliminary Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	8	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	324+39*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	12,3		12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)	440	2500	100	A
T _{tp}	over temperature protection	110	not	120	°C V
U _{DCTRIP}	U _{DC} -protection (U _{analog OUT} = 9 V);	i	not implemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

